服务器报价热线

Nvidia推出一个与Kubernetes集群配合使用,加速深度学习负载

GPU在数据中心越来越受欢迎,它可以加速机器学习和深度学习等数据密集型工作负载。现在,全球最大的GPU制造商Nvidia将推出一个与Kubernetes集群配合使用的用例,以加速深度学习模型的训练。
 
Nvidia本周二表示,将发布Kubernetes on Nvidia GPUs的候选版本,可供开发人员免费使用。该版本是针对那些在多云GPU集群上训练深度学习模型的企业。
 
Nvidia 是在Computer Vision and Pattern Recognition大会上宣布推出Kubernetes on Nvidia GPUs的,此外还推出了新版本的推理优化工具和运行时引擎TensorRT,以及名为DALI的GPU数据增强和图像加载库,旨在优化深度学习框架的数据管道。
 
Nvidia表示,推出Kubernetes on Nvidia GPUs背后的想法是为了让软件容器编排平台更加“GPU感知”。Kubernetes on Nvidia GPUs针对的是运行人工智能应用的容器,将帮助开发人员更好地协调散步在多个云主机的GPU集群。
 
Moor Insights&Strategy创始人兼首席分析师Patrick Moorhead表示:“这很重要,因为Kubernetes托管的应用现在可以利用GPU的性能了。这在虚拟机上将实现比以前更高的可扩展性。”
 
就在Nvidia这次发布的几周之前,谷歌刚刚在其Kubernetes Engine平台上发布了一个测试版的GPU,旨在加速图像处理和机器学习工作负载。谷歌当时表示,这个云GPU可用于创建由Nvidia Tesla V100P100和K80处理器驱动的Kubernetes节点池。
 
Nvidia的TensorRT推理加速器是针对推理模型的开发者。该工具集成了谷歌开源的TensorFlow机器学习框架,并增加了新的层和功能,以加强针对推荐系统、神经机器翻译、图像分类和语音识别等应用的推理。
 
至于DALI,这是一项为JPEG图像编码提供GPU加速库的服务,旨在解决基于视觉的深度学习应用中的性能瓶颈,目的是为了帮助扩展图像分类系统如PyTorch、TensorFlow和ResNet-50的训练。AWS的P3 8-GPU实例以及Nvidia自己的DGX-1深度学习系统上都将提供DALI。
 
“深度学习研究人员需要他们的管道是便携的,”Nvidia加速计算软件和AI产品总监Kari Briski说。

上一篇: NVIDIA展示AI新格局,通过GPU探索无限可能
下一篇: 人工智能的高速引擎:HPE Apollo6500 Gen10服务器

本文责任编辑【itsto.com

展开